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Pattern formation by electro-osmotic self-organization in flat biomembranes
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Pattern formation associated with ionic currents often occurs in biomembranes. The symmetry breaking is
interpreted as resulting from an instability driven by the membrane protein segregation. The velocity of a
membrane protein under electric field is determined. Two instability mechanisms are sketched in a flat geom-
etry. Critical parameters are determined and compared with experimental data.@S1063-651X~97!13309-8#

PACS number~s!: 87.10.1e, 47.20.2k, 66.10.2x
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I. INTRODUCTION

A fundamental aspect of the growth physiology lies in t
ability of a cell or a group of cells to undergo spatial diffe
entiation. Membrane proteins, as channels and pumps,
trol the exchanges of molecules between external and in
nal media. Their densities can be periodically modulated@1#
as, for example, in the acetylcholine receptors~AChR! in
muscle cells where the characteristic wavelength is of
order of 10mm. Thermodynamic models can explain su
aggregations@2#. But spontaneous pattern formation is oft
linked to transcellular currents with typical wavelengths
the range 10mm to 1 cm~see@3# for reviews!.

The symmetry breaking may be interpreted as resul
from a dynamical instability~positive feedback effect! linked
to membrane protein segregation. The central process, a
origin of the instability mechanism, pointed out by Jaffe@4#
is that an electric field induces electromigration of prote
along the membrane, as observed experimentally@5#. Several
authors suggested a mechanism where protein motion is
duced by electric forces on the protein charges@6,7#. The
very nature of the feedback depends on the intrinsic pro
charges and various properties such as the transmemb
flux produced by channels and pumps. Another mechan
has been recently proposed@8# where the membrane protein
are dragged along the electro-osmotic flow induced by
motion in the Debye layer close to the membrane. Usu
membrane bears negative charges and as a result pro
even negatively charged, move in the direction of the elec
field contrary to the above situation.

In this paper we study and compare, in the same fra
work and for a flat biomembrane, two instability mech
nisms. The protein aggregation is driven either by elec
force on its electric charge as in Refs.@6,7# or by electro-
osmotic flow@8#. We first derive in Sec. III the general equ
tion for the protein motion. In Secs. IV and V we give th
velocity of the protein in the two limits of pure electric forc
or electro-osmotic flow. In Sec. VI we develop a line
analysis of electrodiffusive equations and determine the
teria and critical wave vectors. Comparison with experim
tal data is performed in Sec. VII.

II. THE BASIC EQUATIONS

The basic structure of a biological membrane is a lip
bilayer that is mostly an impermeable barrier to the pass
561063-651X/97/56~4!/4521~5!/$10.00
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of ions. Ionic exchange between intracellular and extrace
lar media are performed by specific proteins as pumps
channels. Chemical activity of these proteins generates m
brane potential by a net transfer of charges across the m
brane. In the stationary state and for smallz potential, elec-
tric potential and ionic concentrations are constant outs
the Debye layers and proteins in the membrane are at
with a constant concentrationCp0. As the membrane bear
charges, ions with opposite charge accumulate close to
the Debye layer with a characteristic leng
x215(«kBT/e2Na( j zj

2Cj 0)1/2 depending on the ionic con
centrations of different speciesCj 0 far from the membrane
If we assume some fluctuation of ionic charge densitydr,
electric potentialdf, and protein concentration in the mem
branedCp , they must satisfy general linearized electroh
drodynamical equations we now briefly recall. Fluctuatio
of chargedr5( jNazjedCj and electric potentialdf satisfy
the Poisson equation

Ddf i ,e52dr i ,e /« ~1!

and electrodiffusive equation in internal (i ) and external (e)
media

]dr i ,e /]t5DDdr i ,e2Dx2dr i ,e , ~2!

whereD is the diffusion coefficient of ions we assume to
the same for all species. Boundary conditions on the me
brane are now to be introduced. The first one is the conti
ity of electrodiffusive flux across the membrane:

2DF S ]dr i ,e

]z D1«x2S ]df i ,e

]z D G5dI , ~3!

wheredI is the fluctuation of the ionic flux density produce
by pumps and channels.I is usually a complex nonlinea
function of the membrane potential, concentrations of diff
ent ion species, pumps and channels. For simplicity, we c
sider only one type of mobile protein of concentrationCp
~pump or channel! and neglect the membrane potential d
pendence ofI . Then,I has the following expression:

I 5I 0@~Cp2Cp0!/Cp0# anddI 5I 0dCp/Cp0 . ~4!
4521 © 1997 The American Physical Society
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The two last boundary conditions concern the electric pot
tial. As we shall see in the following, wave vectors of inte
est will satisfykd!1 ~whered'5 nm is the sample thick-
ness andk,107 m21). It implies that electric field is
constant across the membrane. Then, it is straightforwar
link internal and external electric fields~for a detailed dis-
cussion, see Ref.@9#!,

]df i

]z
5

]dfe

]z
, ~5!

df i2dfe52
«d

2«m
S ]df i

]z
1

]dfe

]z D , ~6!

where«m is the membrane permittivity andf i ,e the potential
at the membrane surfaces.

The last equation is the conservation of membrane p
teins:

]dCp

]t
1¹•dJ50. ~7!

J is characterized by two terms. The first one is the diffus
term 2Dp¹dCp . The second one is the effect of electr
field on protein motion we shall now study.

III. PROTEIN MOTION

Protein motion in the membrane results from two diffe
ent electric field effects: electric force on intrinsic prote
charges and electro-osmotic flow due to the charges in
Debye layers. The configuration of the mobile protein m
be sketched as the following~Fig. 1!: one portion included in
the membrane and two protuberances in internal and exte
media of sizeRi ,e and with chargeszpi,pe . Typical sizesRi ,e
are in the range'0 for pump H1 bacteriorhodopsine to 10
nm for AChR or Ca21 ATPase pump in the sarcoplasm
reticulum @10#. Let us first recall the electro-osmotic effec
An electric fieldE, parallel to a charged surface, generate
fluid motion V known as electro-osmotic flow:

FIG. 1. Modelization of a membrane protein by three parts. F
xRi ,e@1, an electric fieldE generates two components of electr
force on protein. The first one is linked to electro-osmotic flowV
induced by the Debye layer close to the membrane: it sweeps
protuberance along the field. The other one is due to negative
trinsic charges of protuberance that induce a sphere motion in
opposite direction.
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V52
«z

h
~12e2xz!E, ~8!

where h is the bulk viscosity andz the zeta potential or
surface electric potential. Hydrodynamic velocitiesVi,e on
each side of the biomembrane are then coupled to ele
fields through the respective zeta potentialsz i ,e . These po-
tentials are characteristic of the active membrane poten
and surface charges due to lipids and other proteins.
second action of an electric field on protein motion is due
their intrinsic charges characterized by electrophoretic m
bilities m i ,e and frictionsb i ,e

21 . The determination of the pro
tein velocity U results from the balance between frictio
forces2bm

21U on the membrane portion with electric force
b i ,e

21m i ,eEi,e and friction forcesb i ,e
21(U2Vi,e) on protuber-

ances:

U5
b i

21~m iEi1Vi!1be
21~meEe1Ve!

bm
211b i

211be
21

, ~9!

whereVi,e are the electro-osmotic flow acting on protein pr
tuberances. Einstein relation has provided diffusion coe
cient Dp /kBT51/(b i

211be
211bm

21).

IV. PROTEIN AGGREGATION DUE
TO ELECTRIC CHARGES

A first limiting case corresponds to a localized prote
charge:xRi ,e!1. Then, electro-osmosis does not act on p
tein. Its motion is only due to intrinsic charges,

U5
eDp

kBT
~zpiEi1zpeEe!, ~10!

whereEi,e are the electric fields at the membrane inside
Debye layer. Equation~7! reads

]dCp

]t
5DpDdCp1

eDpCp0

kBT
~zpiDsdf i1zpeDsdfe!.

~11!

Ds is the surface Laplacian.
As protein bears usually a negative charge, its motion

opposite to the electric field. However, some proteins l
AChR move in the same sense as observed with use of fl
rescently labeled ligands. Poo was the first to suggest
electro-osmosis could play a role@11#.

V. THE ELECTRO-OSMOTIC LIMIT

The second limiting case corresponds to big macrom
ecules as AChR exploring the whole Debye layer:xRi ,e@1.
Consider for simplicity, protuberancesRi ,e as spheres uni-
formly charged. Then, electrophoretic mobilitiesm i ,e are
simply proportional to zeta potentials of proteinzpi,pe :
m i ,e5«zpi,pe /h. On the other hand, hydrodynamic flowsVi,e
seen by proteins are outside the Debye layer: it meansxz@1
in Eq. ~8!. Then, Eq.~9! reduces to

U5
Dp

kBT
@b i

21~zpi2z i !Ei1be
21~zpe2ze!Ee#, ~12!
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which can be simplified. Indeed thez potential of proteins
can be neglected compared to the membrane one, us
bigger than 10 mV. Evaluation of thez potential
zpe'ezpe/4pR2x« for acetylcholine receptors give
zpe'21.6 mV for a charge numberzpe'216, a character-
istic size Re'10 nm and typical value of Debye lengt
x21'1 nm. Friction coefficientsb i ,e

21 are given by Stokes
formulas for a sphere: b i ,e

2156phRi ,e . Assuming
Ri'Re'R, Eq. ~12! reduces to

U52
6p«RDp

kBT
~z iEi1zeEe!, ~13!

whereEi and Ee are electric fields outside the Debye lay
contrary to the previous case.

Externalz potential is usually negative. If we only con
sider external potential as in electrophoretic experimentsU
and Ee are now in the same sense contrary to the elec
force of Eq.~10!. By analogy with Eq.~10!, we can define an
effective chargezi ,e

eff526«pRz i ,e /e'110 of opposite sign
to zi ,e . These results are in agreement with experiments
AChR @11#. Equation~7! now reads

]dCp

]t
5DpDdCp2

6p«RDpCp0

kBT
~z iDsdf i* 1zeDsdfe* !.

~14!

Let us emphasize that, contrary to Eq.~11!, df i ,e* are the
potential outside the Debye layer satisfying the sim
Laplace equation.

We are now able to explain the instability mechanis
coupling the protein motion to ionic transport through t
membrane. Two cases must be taken into account. First
intrinsic charge of protein drives its motion for small prote
xR!1. In the other limitxR@1, electro-osmotic case, pro
teins move under electro-osmosis flow induced by
biomembrane. These two movements are opposite but
relevant in each case with biological results. Let us note
electric potentials in Eqs.~14! and ~11! are different.

VI. INSTABILITIES FOR A FLAT BIOMEMBRANE

Linear stability of the system is studied for normal mo
fluctuationsdui ,e' f i ,e(z)exp(vt1ikx), whereui ,e stands for
r, Cp , andf. v is the growth rate andk the wave number.
Resolution of Eqs.~1!, ~2!, and~11! for pure charge effect o
Eq. ~14! for the electro-osmotic one provides functio
f i ,e(z). Dispersion relationv(k), derived with the use of
boundary conditions~3!–~6!, may be simplified in the limits
«dk/«m!1 and«dx/«m@1 and fork/x!1. In these limits,
the two relations have the same general expression in te
of k0.

v21vS Dpk21
«d

2«m
Dx2kD1Dp

«d

2«m
Dx2k2~k2k0!50,

~15!

where for the pure electric force limit,

k015
eI0

«kBTDx2 ~zpi2zpe! ~16!
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and for the electro-osmotic one,

k025
6pRI0

kBTDx2 ~ze2z i !. ~17!

For k0,0, the system is stable and returns to the station
state without any oscillation~Fig. 2!. The system become
unstable for 0,k,k0, i.e., for a membrane with a charac
teristic size bigger thank0

21. The growth rate of an homoge
neous perturbationk50 is equal to zero as expected fro
the conservation of proteins number in the membrane.

For the first case, the instability criterion reduces to

I 0~zpi2zpe!.0. ~18!

If we only consider the external charge, the criterion redu
to an efflux of ionic current. However, in literature@7# the
established criterion is only

I 0zpi.0. ~19!

In a flat biomembrane, internal and external electrical re
tivities are of the same importance contrary to the ca
model, as considered by Fromherz, where only the inte
resistivity plays a role. Another difference is the unusu
presence of the term ink and notk2 in the dispersion relation
@7#. This is an artifact due to the simplified geometry~flat
membrane!. Indeed a complete analysis in cylindrical geom
etry @12# shows that one recovers the criterion~18! and ak
dependence in the limit of small wavelengthka@1 ~wherea
is the radius of the cell!. The other limitka!1 leads to Eq.
~19! andak2 dependence.

For the electro-osmotic limit, the criterion of instabilit
reads

I 0~ze2z i !.0. ~20!

For characteristic cellular parametersze,0 andz i.0, a
pattern occurs if the pumps or channels produce an influx
ionic current. This is the case of AChR. If we only consid

FIG. 2. Dispersion relationv/Dpk0
2 as a function of the reduced

wave vectork/uk0u shows the system instability fork0.0 and sta-
bility for k0,0. Conservation of the proteins number in the me
brane explains the zero growth ratev for k50. The most unstable
wave number isk0/2 and the corresponding growth rate isDpk0

2/4.
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external parametersze,0 andzpe,0 ~neglecting the inter-
nal one! the criteria~18! and ~20! of instabilities are oppo-
site: an influx for electro-osmotic instability and an efflux f
the other case. The same remarks on geometrical effec
true for this last instability compared to results given in R
@8#.

In the following, we only consider the unstable cas
k0.0. The most unstable wave number isk5k0/2 and the
corresponding growth rate isv5Dpk0

2/4 ~see Fig. 2!. Con-
trary to the cylindrical case~in preparation!, most unstablek
is close to the marginal wave numberk0. For k@k0, the
system returns to equilibrium with the characteristic diff
sion time of a protein:v'2Dpk2. For k!k0 and x/k@1
and for typical protein diffusion coefficientDp'1028 cm2

s21, v varies linearly with the wave vector:v'Dpk0k.
Contrary to the cylindrical case, electric characteristics
internal and external bulks do not play a role in a fl
biomembrane.

VII. NUMERICAL EVALUATIONS

Let us now estimate the conditions for the appearanc
self-focusing of ion pumps set forth above. First of all, it
interesting to compare the respective critical wave vectorsk0
for the two possible regimes:k01 for pure electric force case
@Eq. ~16!# and k02 for the electro-osmotic one@Eq. ~17!#.
Typical values of the zeta potentialz and the charge numbe
z are respectively of the order of 10 mV and 10. It leads
k01/k02'1.

An estimate of the critical wave vector is rather rough d
to the lack of precise values of the different parameters.
bulk resistivity is about 1/«Dx2'2 Vm @11#. A first esti-
mate of k02 @Eq. ~17!# is obtained with use of the typica
intensity of ionic currents at the end of the instabilityI 0'0.5
to 0.01 A m22 @3#. For I 0'0.1 A m22, the valuek02'102

m21 then obtained does not fit the size of observed patte
~10 mm to 2 cm! well. In fact, the above bulk resistivity
gives a value ofD'1025 cm2s21, which is certainly over-
estimated in cytoplasm. Indeed, it includes all species of i
and not only the one participating to the transcellular flow.
reality, the diffusion coefficients of the typical ions co
cerned are much lower, as measured experiment
DCa'1027 to 1028 cm2 s21 or DH'1026 cm2 s21 @13#.
For I 0'0.01 A m22 andD'1027 cm2 s21, k02'103 m21,
which gives a more realistic wavelength of the order o
mm. Another factor that may interfere with the evaluation
k02 concerns the estimation ofI 0, which can be very differen
a

re
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from the value of the final pattern. Consider the extreme c
of a conductance of a voltage-gated channel'104 Sm22.
For a typical value of membrane potential 0.1 V a
D'1025 cm2 s21, k02'106 m21. These evaluations show
that the range of wavelengths by such a mechanism is la
and is consistent with cellular sizes~from 10 cm inChara
corallina to 10 mm in animal cells!.

The growth rateT'1/Dpk0
2 can be estimated with the

observed pattern wavelength. The growth rateT'104 s
('10 h! for k02'104 m21, Dp51028 cm2 s21. It is in
agreement with the characteristic time of the dipolar io
currents in Fucus. In confined geometry, growth rate can
different @12#.

VIII. CONCLUSION

Growth and development of biological systems seem
be triggered by electric currents. In this paper, we ha
shown that the transition from a homogeneous state t
spatially ordered structure may be driven by an instabi
linked to electro-osmosis. This work is supported by thr
experimental facts. Patterns of proteins are known
biomembranes@1#, the electro-osmosis role in the prote
transport has been proven@11#, and ionic currents are linked
to out of equilibrium structures@3#. A clear example is the
occurrence of bands inChara corallinagreen algae or of a
dipolar circulation of calcium ions inFucus. We have char-
acterized in the same framework instabilities driven
electro-osmotic flow and intrinsic electric charge drift. W
have shown that the order of magnitude of the critical wa
vector is of the same order for both instabilities, contrary
the flux criteria which are opposite. Spherical and cylindric
geometries have to be studied in order to compare more
cisely with experiments on biological cells@12#. Discrimina-
tion between the two mechanisms could be obtained by
incorporation of positively charged lipids into the membran
which would decrease itsz potential and reduce the electro
osmotic flow. The experimental study of such instabilities
artificial biomembranes would be of great interest. Let
also note that hydrodynamic contributions that are due
electro-osmosis may also provide unexpected nonlineari
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